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J. Phys. A :  Gen. Phys., Vol. 5, May 1972. Printed in Great Britain 

A soluble one dimensional model of an interacting Fermi gas: I t  

E M  WITTELESS and G CARMI$ 
$ Department of Physics, Bar-Ilan University, Ramat-Can, Israel 
5 Department of Physics, St John’s University, New York, NY 11432, USA 

MS received 5 May 1971, in revised form 19 November 1971 

Abstract. We study a one dimensional model system of fermions which proves to be exactly 
soluble in the thermodynamic limit. It is shown that the thermodynamic functions for the 
model system are the same as for a system of noninteracting fermions in a harmonic 
oscillator well. As a special case of the model system, with a particular choice for the 
coupling constant, it reduces to a particular two-species system of fermions interacting via 
pairwise harmonic forces. For this case of the two-species system the free energy per 
particle, the pressures. the specific heat at constant volume and the isothermal compress- 
ibility are calculated in the canonical ensemble in closed form. It is shown that this system 
does not undergo a phase transition. 

1. Introduction 

In recent years considerable effort has been expended in the study of one dimensional 
models for many body systems (Lieb and Mattis 1966). The reason for this interest is 
twofold. First, one dimensional problems are easier to solve than the analogous three 
dimensional problem. Solution of one dimensional problems may, therefore, point 
the way towards a better understanding of the domain of validity and the limitations 
of those approximations employed in the study of three dimensional systems. Secondly, 
such physical systems as chain molecules and some organic macromolecules may be 
described by one dimensional models and therefore studying such models will lead to 
a better understanding of these physical systems. 

In 9 2 we present a model Hamiltonian which is treated exactly, based on the double- 
time Green function technique. In particular, the thermodynamic properties of the 
system are determined. It is shown that in the thermodynamic limit, the interaction 
term in the model Hamiltonian does not contribute to the partition function of the 
canonical ensemble and the system is equivalent to a set of noninteracting fermions 
in an attractive harmonic oscillator well. In 9: 3 we evaluate without approximation 
the canonical partition function of the resulting noninteracting Fermi gas. In  a suitable 
limit which is consistent with the thermodynamic limit, the model Hamiltonian reduces 
to the Hamiltonian representing a one dimensional system of 2N point particles, N of 
which have a mass m (‘pseudoelectrons’), obey Fermi-Dirac statistics and interact with 
each other via a pairwise repulsive harmonic potential. The other N point particles 
(‘pseudoions’) are assumed to have an infinite mass, interact with each other via the 
repulsive harmonic potential and interact with the pseudoelectrons via an attractive 

t Work supported in part by the National Science Foundation and the US Air Force Office of Scientific 
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potential of the same form. In 9: 4 we evaluate the canonical partition function for this 
case. In 9 5 we calculate the thermodynamic functions for the pseudoelectron system 
in the quantum region. 

2. The free energy of the system-an exact calculation 

Consider the following model Hamiltonian for a one dimensional system of particles 
obeying Fermi-Dirac statistics : 

N P’ 1 
H,, = -+(l-1)-mw2 xi’ 

i = l  2m 2 i = l  

where 6 is a constant which will later be set equal to unity. We will show that in the 
thermodynamic limit and for - 1 < 1 < 1 the free energy per particlef,,, corresponding 
to H,, equals the free energy per particle f,, corresponding to the HA, system of non- 
interacting fermions in a harmonic oscillator well. 

In the limit 1 -+ 1-0 the Hamiltonian (1) reduces to 

H = H,+H, 

The Hamiltonian (2) represents a one dimensional system consisting of 2N point 
particles N of which have a mass m (‘pseudoelectrons’) which interact with each other 
via a pairwise repulsive harmonic potential, and N particles of infinite mass (‘pseudo- 
ions’) interacting with each other via a pairwise repulsive harmonic potential and 
interacting with the pseudoelectrons via an attractive potential of the same form. The 
Hamiltonian for such a system is 

N p ?  1 N l N  1 N  

i = l  2m 4 i , j = l  2 i , j = l  4 i , j =  1 
H = C -L--x ( x ~ - x ~ ) ~ + - - c (  1 ( ~ i - X j ) ~ - - c ~  ( X i - X J 2 ( 3 )  

where xi is the position of the ith pseudoelectron, X i  the position of the ith pseudoion 
and x is a coupling constant which depends on the size of the system. We shall assume 
that each species of N particles separately obeys Fermi-Dirac statistics. The trans- 
formation 

N 

x i -+x i+N- ’  X j  (4) 
j =  1 

corresponding to measuring the coordinate x i  relative to the centre of mass of the 
N pseudoions leads to the Hamiltonian (2), with 

E N  
w2 3 -. 

m 
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Since Hamiltonian (2) as well as Hamiltonian (1) does not include any spin interactions, 
we may factorize out the spin coordinates of the system and treat only the spatial co- 
ordinates. The model system described by equation ( 2 )  has been studied by several 
authors (Houston 1935, Bloch and Hsieh 1954, 1956 and Thompson 1967). However. 
all of these authors fail to take into consideration the fermion nature of the particles. 
Storer (1970) has extended the Thompson model, taking into account the fermion 
character of the particles. Employing an involved combinational calculation, he 
obtained the grand canonical partition function for the system. Because of the difficulties 
posed by the appearance of the chemical potential, the grand partition function was not 
calculated exactly and thus the thermodynamic properties of the system can only be 
obtained within an approximate scheme. 

In spite of the apparent simplicity of the Hamiltonian (2) there is in fact no known 
method for obtaining an expression in closed form for the free energy. We can, however. 
utilize the results that we shall obtain for our model system given by Hamiltonian (l), 
in order to extract the free energy per particle corresponding to Hamiltonian (2). 
Specifically we shall perform the limit i -+ 1-0 in such a way that the Fermi energy 
of HA, be equated to the Fermi energy of H, in equation (2) .  In Q 4 we present an argu- 
ment which leads us to claim that the free energy of the system described by equation ( 2 )  
equals the free energy of the system defined by equation (l), when the limit is chosen in 
the manner just stated. 

We shall now turn to the calculation of the free energy of the system represented by 
the Hamiltonian (1) using the double-time Green function technique. In its second- 
quantized form, the Hamiltonian (1) is 

7 

(6) 1 2  t tlw2 I 3  ' 
4 0  N i , , = O  

Hi,, = hR nc,t,c,,------ 1 (n+1) ( C , C ~ + ~ - C ~ ~ ~ C ~ )  
n = O  

where R 
oscillator energy level n. The c, satisfy the usual anticommunication relations 

w(l -i)' and c,' is the operator which creates a fermion in the harmonic 

In the Hamiltonian (6),  we have neglected the zero-point energy for the system. In 
terms of the operators 

n = O  

I 

the Hamiltonian (6)  can be written as 
1 h o 2 6  

n = O  4RN H i ,  = hR ncicn----A2 

where the operators A and B satisfy the commutation relations, 

hw26 
n [B ,  H , , ]  = hRA + _ _ A  

[ B ,  -41 = - 2 N .  
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To obtain the thermodynamic properties of the system, we calculate (H,) the canonical 
ensemble average of the operator H I .  This thermal average is obtained by the method of 
double-time Green functions (Zubarev 1960). In general the correlation function of any 
two operators A and B is given by 

where p = (k ,T)-  and ( ( A ;  B))E has the standard meaning of a Green function (Zubarev 
1960). 

For the Hamiltonian (lo), we have 

Solving equations (12) and (14) for ( ( A ;  A>E, we obtain 

where we have introduced x 2  R2 + 6w2. The thermal average of ( A 2 )  is 

( A 2 ) ,  = - RN(R2 + 6 ~ ’ ) -  coth($ph(R2 + 6 ~ ~ ) ” ~ ) .  (16) 

( Hl), = aho26(R2 + 60’)- coth(#h(Q2 + 6 0 ~ ) ” ~ ) .  (17) 

Thus, 

The canonical partition function can now be evaluated using (Kadanoff and Baym 1962, 
P 16) 

to obtain 

[In Z],, - [In Z],=, = In sinh($h(R2 + o ~ ) ” ~ )  - In sinh($hR) (19) 

where [In Z], = corresponds to the canonical partition function for a system of non- 
interacting fermions in a harmonic oscillator well. 

In the thermodynamic limit, the free energy per particle is 

f d , l  -fa,o = lim { -(” ‘(Un mid= 1 - [In Z(4la=o)I 
N -  m 

sinh($hw) 
sinh(@iphw( 1 - A.)1iz) N+ m 

As the right hand side of (20) is of order 1/N, we see that the interaction part of the 
Hamiltonian does not contribute to the free energy per particle of the system. The 
thermodynamic properties of the system will be the same as those of a system of non- 
interacting fermions in a harmonic oscillator well. 
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3. The partition function in the canonical ensemble 

The partition function for a system of fermions cannot in general be evaluated analytically 
because of the restrictions on the occupation numbers brought about by the Pauli 
exclusion principle. This difficulty exists even for the ideal Fermi gas. As a result it 
is customary to evaluate the grand partition function for the system and assume that in 
the thermodynamic limit, the same thermodynamic functions are obtained independent 
of the ensemble used for the calculation. In calculating the grand partition function, 
one must introduce the chemical potential p and use the requirement that the total 
number of particles be N in order to eliminate p from the thermodynamic functions. 
This however cannot be done analytically either for the ideal Fermi gas or for our system 
of noninteracting fermions in a harmonic oscillator well. We shall here calculate exactly 
and analytically the partition function for our system in the canonical ensemble. This is 
possible because the eigenvalues in our system are linear in n. 

A study of the thermodynamic functions in the canonical ensemble for a many- 
fermion system has been performed previously by Brout and Englert (1960) and by 
Horowitz et a1 (1963). However, these authors restricted their attention to T = 0 K. 
Furthermore, the thermodynamic functions were evaluated by a linked-cluster expan- 
sion, precluding the possibility of obtaining exact analytical expansions. By contrast. 
we obtain the thermodynamic function for our model in an exact and closed form. 

The partition function in the canonical ensemble including the zero-point energy is 
given by 

where vJ = 0, 1 is the occupation number of the j th energy level, and kRn, is the energy 
of the jth level. In order to evaluate the sum in (21), we write 

In terms of E exp( - /?An) and 7 = exp( - f f ihQN)  the partition function is given by 

z = y(N!)- '  E . .  . e  ( € ) I " J  

Consider now a system of oscillators having the spectrum 

€ j  = hR(nj + 2) 
and introduce 

fJv = ( N ! ) - l  c c (€pi. 

The canonical partition function corresponding to this system is given by 
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Now, we introduce 

e' = ( N ! ) -  E . .  . ( E p J  

n l  n J + n k  

= N ! ( N ! ) - l  1 . . . E (  €)ZnJ  

= E 1 (€)r'nJ +2 (€yJ + . . . +(€), 1 (€)r'nJ 

n l < n z <  ... n N  

n z = 2  n 2 = 3  n z = r + l  
n2 <n3 ... n2<n3 ... n2 < n 3  ... 

where the prime on the sum in the exponent indicates that the term j = 1 is omitted. 
In general, however 

(€)(I+ 1 W -  1) E ( € ) " " J  = ON-1. 
n z = r + l  
nZ<n3...  

Thus 

ex = € ( € ) Z " - 1 ' c N - l + € Z ( € ) 3 ( N - 1 ) O N - l +  . . .  

e; = ENON 

ON = €-NO; = O , - , ( € ) N - 1 ( 1 + € N + € * N +  . . . )  

but 

Solving this difference equation, we have 

The partition function in the canonical ensemble is therefore given by 

z = exp(+ph*N)( n {exp(ph*j)- 11) . 
N - 1  

j =  1 

The free energy for the system is then given by 

F =  - p -  In Z = - +hQN + 8- 
N 

1 ln(exp(phQj) - 1) 
j =  1 

N 
= +hRN2 + p- 1 In( 1 - exp( - PhQj)). 

j= 1 

Thus, the free energy per particle in the thermodynamic limit is 

Expression (24) looks like the free energy per particle of a system of bosons having an 
energy spectrum 6, = hRn. We will show in a subsequent paper that indeed our system 
of fermions can be expressed in terms of its 'associated boson field', similar to the case 
of the Luttinger model (Luttinger 1963, Mattis and Lieb 1965). 

From expression (24) it is clear that for an arbitrary R which is of order unity, that is, 
independent of N or equivalently the size of the system, the system is nonextensive. 
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For example, the first term of (24) is of order N ,  giving the free energy of the system 
proportional to N 2 .  This result is not surprising and in fact is to be expected for a 
system of noninteracting fermions in a harmonic oscillator well. For the convenient 
case of T = 0 K, because of the exclusion principle, the free energy is given by 

hR N 
F = c h Q ( j + i )  = -N2+hRN. 

j =  1 2 

4. Canonical partition function for the pseudoelectron system 

In this section we shall study the thermodynamic properties of the system described by 
the Hamiltonian (2 ) .  This will be achieved by considering the system described by the 
Hamiltonian (1) for a particular form of the limit i, -+ 1-0. For the latter system, as 
ib -+ 1 - 0, the harmonic oscillator eigenfunctions extend over an ever increasing portion 
of space. However, as the system is enclosed in a box of length L, to insure that the walls 
of the box play no role, we shall require that 

This restriction insures that at least the lowest eigenfunctions will be localized well 
within the box. Consistent with this requirement, we shall assume the functional form 
of the coupling constant to be 

where J ( c )  is an arbitrary function of the particle density c = N / L .  For I .  given by (25). 
equation (20) now becomes 

, 1 In N 
. f j .+ l , l  -fE.-l,o = lim - - -+ 0. N - ~ P  N 

That is, even for the special case of the limit il --f 1-0, consistent with (25) ,  we again 
obtain the basic result that the interaction part of the Hamiltonian (1) does not con- 
tribute to the free energy per particle. 

For A -+ 1 - 0 in accordance with (25 ) ,  the right hand side of equation (24) is now of 
order unity and hence the system is extensive. Likewise, the system described by 
equation ( 2 )  is extensive, for the Hamiltonian describes a group of particles which are 
free except for the fact that the centre of mass oscillates harmonically with frequency 0. 

(The oscillations of the centre of mass will contribute a term of order unity to the free 
energy (eg the energy of a one dimensional classical harmonic oscillator is k,T, according 
to the equipartition theorem). Furthermore, the free energy of a group, of noninteracting 
particles is of order N .  Hence the system is extensive.) The limit of A --f 1 -0, in accord- 
ance with (25), is still ambiguous for J(c)  is as yet entirely arbitrary. However, we are 
interested in that choice of J(c) which insures that the limiting free energy of the system (1) 
will coincide with that of the system (2) .  A reasonable procedure for fixing J(c) is to 
demand that the Fermi energy of the system ( 2 )  be equal to the energy of the highest 
occupied level of system (1) at T = 0 K. The Fermi energy of system (2) is eF = (nhc)’/2m 
and the energy of the highest occupied oscillator level at T = 0 K is Nhw(1- ).)Ir2 = hJ(c). 
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Thus 

X 2 C 2 h  
J(c)  = - 

2m 

We now study the free energy (24) in the limit A + 1 - 0 in accordance with equations 
(25) and (27). Applying the Euler summation formula (Wylie 1960) to the sum in (24), 
we obtain 

where f F  = ( ~ h c ) ~ / 2 m  is the Fermi energy and z is the temperature in units of the Fermi 
temperature TF 

The details are presented in full in the Appendix. The infinite sum in (28) can be rewritten 
in terms of an integral using the identity 

C ra n-2e-n / r  = JOmdxx{exp(x+f)-1)-'. 

n = l  

It is clear that this function is analytic and its derivatives with respect to z exist to all 
order. Expressing f in terms of this integral makes it clear that derivatives off  with 
respect to z exist to all orders except for the physically uninteresting cases of z + 30 

and/or the density c + 0. Since we are only interested in the degenerate quantum 
region, for our model system we shall only consider the region of 0 < z < 1 .  Within 
this region we may conclude from expression (28) that our model system cannot exhibit 
any phase transition. 

5. The thermodynamic function-an exact calculation 

In the previous section we have obtained expression (28) for the free energy per particlef 
for the pseudoelectron system. Our procedure for determining J (c )  in (27) assumes that 
we are dealing with a degenerate quantum system. We will therefore restrict our discus- 
sion of the thermodynamic functions to the case of low temperatures, that is, T << 1. 

In figure 1, we plot f as a function of z. 
The pressure of the system is 

In figure 2, we plot the pressure as a function of z. 
Using (28), we calculate the specific heat C, for the system 
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0,3:. 0, I 0.1 0.3 0.5 0.7 0.9 

Figure 1. The free energy per particlef(in units of the Fermi energy, B ~ , )  as a function of 
the reduced temperature 7 = T/TF .  

0.1 0.3 0.5 0.7 0.9 
7 

Figure 2. The pressure p (in units of ccF) as  a function of T = T/T, 

Clearly, as z + 0 we have C, + 0 guaranteeing that the third law of thermodynamics 
holds for our system. Figure 3 gives the specific heat as a function of 5.  

Using (30) we also calculated the isothermal compressibility KT for our system 

In figure 4, we plot K T  as a function of 5.  

6. Conclusion 

We have studied a one dimensional model system of interacting fermions. We have 
shown that the model system is exactly soluble in the thermodynamic limit and we have 
evaluated the free energy of the system. It was shown that in the thermodynamic limit, 
the interaction term of the Hamiltonian does not contribute to the partition function of 
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t 

0. ‘I 
0.1 0.3 0.5 0.7 0.9 

.r 

Figure 3. The specific heat at constant volume C, as a function of 5 = T / T F .  

. 2- ‘1 

I 
0.1 0 3 0.5 0.7 0.9 

r 

Figure 4. The isothermal compressibility K ,  (in units of czF) as a function of i = T/T,. 

the canonical ensemble and the system is equivalent to a set of noninteraction fermions in 
an attractive harmonic oscillator well. As a special case, for a specific form of the coupling 
constant, the model Hamiltonian reduces to the Hamiltonian representing a particular 
two-species system of fermions interacting via pairwise harmonic forces. The thermo- 
dynamic properties of this system have been studied exactly. The pressure, the specific 
heat at constant volume, and the isothermal compressibility were all calculated in the 
canonical ensemble in closed form. These functions were shown to be analytic, proving 
that the system cannot possess a phase transition of any order. 
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Appendix 

In this Appendix we evaluate the sum in (29) exactly, using the Euler summation formula. 
The Euler summation formula expresses a sum in terms of an integral and a remainder 
which may be expressed as an infinite sum 

We shall show however that the infinite sum vanishes for our function. Consider 
s 

ln(exp(phQj)- 1). 

In our case, using the Euler summation formula, 

1 
N +  x 2 

I = lim (k) ( JIN In(exp(phQx) - 1) dx +- ln(exp(phQN) - 1 ) 

1 B2j +- ln(exp(phQ)- 1 ) +  c - - ( j ' k ? j -  ')-.fl 

We shall first consider the infinite sum in (A.2). Let phC2 = <jN 

2 = (Y) ! 

1 1 
.N - XI 2 2 

I = lim [i) [ J y  ln(exp((xjN) - 1) dx + - ln(e' - 1) +- In(e'" - 1 ) 

, f ( x )  = ln(exp((x/N)- 1 )  

f ' ( x )  = - 5 j l - e x p j  N -$)I - 1  

I 
N 

f ' (N)  = - = ( I -  -i - 1  e -) 

- 1  
f I (1) = - i { l - e x p (  -&)} 

N 

lim - f ' (N)  = lim ( -- J 2 ) ( 1  -e-<)- '  -+ 0. 
N + z [ A )  N-r 

Using equation (9.610; 1) (Gradshteyn and Ryzhik 1965) 

B,(-(/N)" f '(1) = n !  

- + o  
2 

f 2 ( x )  = ($) expi -%){I -exp( -:)I 
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1 cosh(tx/2N) 
N 4 sinh3({x/2N) 

f 3(x) = - (L)  

3 

sinh3x = ( x + ( A ) x 3 + ( & ) x 5 +  ...) 

= x 3  1+ - x2+  - x + .. ( (:!) (:!) j3 
- 3  

sinh 3( 4/2 N )  (4 /2  N ) 3  

lim f3(1) = -2  lim (k]{ - I +  (;!)(:N)' - - + " ' } - 3  +" 
N-+m N-'X 

C1 rly similar results are obtained for all odd derivatives off(N) andf(1). We therefa 
conclude that the last term in (A.2) does not contribute to 1. Thus, 

e 

I = lim - In(eS"-- 1)+ lim 
u-i(i?j"li  N-a, 

The evaluation of this integral leads to (30). 
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